Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells.
نویسندگان
چکیده
Lysophosphatidic acid (LPA) enhances urokinase plasminogen activator (uPA) expression in ovarian cancer cells; however, the molecular mechanisms responsible for this event have not been investigated. In this study, we used the invasive ovarian cancer SK-OV-3 cell line to explore the signaling molecules and pathways essential for LPA-induced uPA up-regulation. With the aid of specific inhibitors and dominant negative forms of signaling molecules, we determined that the G(i)-associated pathway mediates this LPA-induced event. Moreover, constitutively active H-Ras and Raf-1-activating H-Ras mutant enhance uPA expression, whereas dominant negative H-Ras and Raf-1 block LPA-induced uPA up-regulation, suggesting that the Ras-Raf pathway works downstream of G(i) to mediate this LPA-induced process. Surprisingly, dominant negative MEK1 or Erk2 displays only marginal inhibitory effect on LPA-induced uPA up-regulation, suggesting that a signaling pathway distinct from Raf-MEK1/2-Erk is the prominent pathway responsible for this process. In this report, we demonstrate that LPA activates NF-kappaB in a Ras-Raf-dependent manner and that blocking NF-kappaB activation with either non-phosphorylable IkappaB or dominant negative IkappaB kinase abolished LPA-induced uPA up-regulation and uPA promoter activation. Furthermore, introducing mutations to knock out the NF-kappaB binding site of the uPA promoter results in over 80% reduction in LPA-induced uPA promoter activation, whereas this activity is largely intact with the promoter containing mutations in the AP1 binding sites. Thus these results suggest that the G(i)-Ras-Raf-NF-kappaB signaling cascade is responsible for LPA-induced uPA up-regulation in ovarian cancer cells.
منابع مشابه
Inhibition of lysophosphatidic acid receptor-2 expression by RNA interference decreases lysophosphatidic acid-induced urokinase plasminogen activator activation, cell invasion, and migration in ovarian cancer SKOV-3 cells.
AIM To explore the role of lysophosphatidic acid receptor-2 (LPA2) in regulating lysophosphatidic acid (LPA)-induced urokinase plasminogen activator (uPA) activation, cell invasion, and migration in human ovarian cancer cell line SKOV-3. METHODS SKOV-3 cells were stimulated with LPA. Cell supernatant uPA level and activity were measured using enzyme-linked immunosorbent assay. LPA2 mRNA expre...
متن کاملLysophosphatidic acid induction of urokinase plasminogen activator secretion requires activation of the p38MAPK pathway.
Lysophosphatidic acid (LPA) is an important intercellular signaling molecule involved in a myriad of biological responses. Elevated concentrations of LPA are present in the ascites and plasma of ovarian cancer patients suggesting a role for LPA in the pathophysiology of ovarian cancer. We have demonstrated previously that oleoyl (18:1) LPA at concentrations present in ascites induces the secret...
متن کاملLysophosphatidic acid induces urokinase secretion by ovarian cancer cells.
Lysophosphatidic acid (LPA) is present at high concentrations in ascites from ovarian cancer patients and has potent mitogenic properties in vitro. Urokinase plasminogen activator (uPA), a critical component of the metastatic cascade, is also found at high concentrations in ovarian ascites and ovarian cancers, and the levels of uPA correlate inversely with prognosis. Because LPA stimulates the ...
متن کاملROCK was involved in the expression of proteolytic enzymes, matrix metalloproteinase (MMP)-9 and urokinase-type plasminogen activator (uPA), leading to LPA-induced BBB disruption. ROCK inhibitor (Y27632) markedly inhibited the expression of proteolytic enzymes
Lysophosphatidic acid (LPA) the simplest of the water-soluble phospholipids, is produced by activated platelets, macrophage and endothelial cells. It also evokes various biological responses. When LPA concentrations reach high levels, brain injury, including stroke and intracerebral hemorrhage (ICH), occurs. Previous studies have shown that LPA is crucial in increasing blood-brain barrier (BBB)...
متن کاملSuppression of urokinase expression and invasion by a soybean Kunitz trypsin inhibitor are mediated through inhibition of Src-dependent signaling pathways.
A soybean Kunitz trypsin inhibitor (KTI) interacts with cells as a negative modulator of the invasive cells. Using complementary pharmacological and genetic approaches, we provide novel findings regarding mechanisms by which KTI inhibits signaling pathways in ovarian cancer cells leading to invasion. Transforming growth factor-beta1 (TGF-beta1) directly activates Src kinase, which in turn activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 11 شماره
صفحات -
تاریخ انتشار 2005